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EXECUTIVE SUMMARY

OBJECTIVE

Develop and test hovering algorithms for the Advanced Unmanned Search System
(AUSS). The AUSS vehicle requires that certain maneuvering functions be performed
without human intervention. Among these functions are the hovering functions: hover
heading, hover pitch, hover depth, and hover altitude.

APPROACH

The simulation program MatrixX/Systembuild, developed by Integrated Systems,
Inc., was used to develop hovering algorithms, and their performance was measured by
at-sea testing.

RESULTS

Sea trials showed good agreement with the simulation runs. Simulation played an
important role in developing the hover algorithms, which proved successful for use on
the AUSS vehicle.
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INTRODUCTION

The Advanced Unmanned Search System (AUSS) was developed by the Naval
Command, Control and Ocean Surveillance Center (NCCOSC) to improve the Navy's
ability to find and identify items lost or placed on the seafloor at depths as great as
20,000 feet. Items such as the Palomares H-Bomb, the U.S.S. Scorpion, the U.S.S.
Thresher, Korean Airlines Flight 007, Air India Flight 182, and the cargo door of
United Airlines Flight 811 are examples of equipment lost by the US and other coun-
tries. Searching for these items proved difficult and highlighted a critical technology
area: deep ocean search.

The AUSS vehicle requires certain maneuvering functions to be performed without
human intervention. Included in these are the hovering functions: hover heading, hover
pitch, hover depth, and hover altitude. The simulation program MatrixX/Systembuild,
built by Integrated Systems, Inc., was used to develop hovering algorithms, and their
performance was measured by at-sea testing. The purpose of this report is to document
the design and performance of these algorithms.

HOVERING FUNCTIONS

HOVER HEADING

The block diagram for the hover heading system is shown in figure 1. The control-
ler is a type zero proportional controller with rate feedback. The heading sensor is in
the form of a gyrocompass and the rate sensor is a resonant beam device which
directly measures yaw rate.

The vehicle dynamics are represented in figure 2. The differential equation models
the vehicle as rotary inertia with velocity squared drag, making the system nonlinear.

The simulation block diagram is shown in figure 3. Since the system was antici-
pated to be "slow" compared to the sample time of approximately 0.5 second, the
simulation was done as a continuous system rather than a discrete time system. It was
later verified that the output was virtually the same in either case. Since the system
was nonlinear, a preliminary goal was that the proportional gain be set so that the
vehicle would respond with full moment to a heading error of 0.333 radian or about 19

degrees. This sets K,, - 3. A trial and error search for a satisfactory rate feedback
yielded a value of K, = 20. This resulted in the nicely damped response shown in
figure 4.

Sea trials of the system produced the graph shown in figure 5. There was reason-
able agreement with the simulation shown in figure 4 for an initial try, and a very sat-
isfactory response was obtained.
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HOVER PITCH

The block diagram for the hover pitch system is shown in figure 6. The controller
is a type zero proportional controller with rate feedback. The pitch sensor is in the
form of a pendulometer and the rate sensor is a resonant beam device which directly
measures pitch rate.

The vehicle dynamics are represented in figure 7. The differential equation models
the vehicle as rotary inertia with a righting moment and velocity squared drag, making
the system nonlinear.

The simulation block diagram is shown in figure 8. As with the heading, the system
was anticipated to be "slow" compared to the sample time of approximately 0.5 sec-
ond, and the simulation was done as a continuous system rather than a discrete time
system. It was later verified that the output was virtually the same in either case. Since
the system was nonlinear, a preliminary goal was that the proportional gain be set so
that the vehicle would respond with full moment to a pitch error of 0.333 radian or
about 19 degrees. This sets K, = 3. A trial and error search for a satisfactory rate
feedback yielded a value of K, = 20. This resulted in the nicely damped response
shown in figure 9.

Sea trials of the system produced the graph shown in figure 10. There was reason-
able agreement with the simulation shown in figure 9 for an initial try, and a very sat-
isfactory response was obtained.

HOVER DEPTH

The block diagram for the hover depth system is shown in figure 11. The controller
is a type one proportional controller with rate feedback. The depth sensor is in the
form of a pressure transducer and the rate is derived mathematically through a differ-
ence equation. The integrator used is limited both positively and negatively and comes
off the limit immediately upon reversal of the sign of the error. In addition, the system
only operates as a type one when the depth rate is below a certain threshold. This is to
prevent overshoot when the vehicle approaches a commanded depth, since the integra-
tor must be prevented from accumulating a large value during the transit time to the
set depth. The integrator only comes into play when the vehicle has arrived and has
slowed its speed. At this time, the error is integrated up to a value which will offset
the buoyancy of the vehicle with the appropriate amount of thrust. The differentiator
has a low pass filter in series with it to smooth out noise introduced by the sensor and
differentiating process. The filter is a compromise between noise elimination and time
delay introduction, which has a destabilizing effect on the system.

The vehicle dynamics are represented in figure 12. The differential equation models
the vehicle as inertia and velocity squared drag, making the system nonlinear.
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The simulation block diagram is shown in figure 13. Since the system utilizes a
mathematical means of generating the derivative of the dcpth and generally type one

systems tend to be less stable, the system was modeled as a discrete system with a

sample time of 0.5 second. Since the system was nonlinear, a preliminary goal was

that the proportional gain be set so that the vehicle would respond with full thrust to a
depth error of 20 feet. This sets Kp = 0.05. The integrator gain (Ki) was selected to

create a signal which would (over a period of minutes) drive the thrusters to counteract
the buoyancy of the vehicle, Ki = 0.001. The limit of the integrator is set at ± 1,
which will allow for full thrust offset if required. The integrator is enabled when the
depth rate falls below ± 0.4 ft/s. This was determined by observing the simulated rate

as the vehicle approached the commanded depth. A trial and error search for a satis-
factory rate feedback yielded a value of Kr = 0.8 with an associated low pass filter
time constant of 1.6 seconds. This resulted in the nicely damped response shown in
figure 14.

Sea trials of the system produced the graph shown in figure 15. There was reason-
able agreement with the simulation shown in figure 14 for an initial try, and a very
satisfactory response was obtained.

HOVER ALTITUDE

The block diagram for the hover altitude system is shown in figure 16. The control-
ler is a type one proportional controller with rate feedback. The altitude sensor is in
the form of a fathometer measurement which is an output from the Doppler sonar.
Being derived from an acoustic sensor, these data are updated relatively slowly (1 sec-
ond) and have associated noise. In order to improve the data, they are processed by
the filter shown in figure 17. The faster update depth sensor with its cleaner signal is
used to create a clean altimeter signal. The averaging of the calculated water depth
over five samples decreases the noise accordingly, and the information is available at
the higher update rate of the depth sensor (0.5 second). The altitude rate is derived
mathematically through a difference equation. The integrator used is limited both posi-
tively and negatively and comes off the limit immediately upon reversal of the sign of
the error. In addition, the system only operates as a type one when the altitude rate is
below a certain threshold. This is to prevent overshoot when the vehicle approaches a
commanded altitude, since the integrator must be prevented from accumulating a large
value during the transit time to the set altitude. The integrator only comes into play
when the vehicle has arrived and has slowed its speed. At this time, the error is inte-
grated up to a value which will offset the buoyancy of the vehicle with the appropriate
amount of thrust. The differentiator has a low pass filter in series with it to smooth
out noise introduced by the sensor and differentiating process. The filter is a compro-
mise between noise elimination and time delay introduction, which has a destabilizing

effect on the system.
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The vehicle dynamics are represented in figure 18. The differential equation models
the vehicle as inertia and velocity squared drag, making the system nonlinear.

The simulation block diagram is shown in figure 19. Since the system utilizes a
mathematical means of generating the derivative and generally type one systems tend
to be less stable, the system was modeled as a discrete system with a sample time of 1
second. The faster data rate of 0.5 second introduced by the filter was conservatively
ignored. 'Since the system was nonlinear, a preliminary goal was that the proportional
gain be set so that the vehicle would respond with full thrust to an altitude error of 20
feet. This sets Kg = 0.05. The integrator gain (K,) was selected to create a signal
which would (over a period of minutes) drive the thrusters to counteract the buoyancy
of the vehicle, K, = 0.001. The limit of the integrator is set at ± 1, which will allow
for full thrust offset if required. The integrator is enabled when the altitude rate falls
below ± 0.4 ft/s. This was determined by observing the simulated rate as the vehicle
closed the commanded altitude. A trial and error search for a satisfactory rate feed-
back yielded a value of Kr = 0.8 with an associated low pass filter time constant of
1.6 seconds. This resulted in the nicely damped response shown in figure 20.

It is of some interest to examine the performance of the altitude filter. Shown in
figure 21 is the simulated unfiltered output of the altimeter. Figure 22 shows the fil-
tered output. The data are processed one more time to simulate the effect of the status
display employed on the AUSS. The data are quantized to a resolution of 1 foot and
sampled once every 5 seconds. Figure 23 shows the simulated raw altitude data sam-
pled in this manner, and figure 24 shows the simulated filtered data sampled similarly.
These outputs can now be compared one to one with figures 25 and 26, which show
the actual sea trial data taken by the status display of the altitude and depth sensor
data. The apparent agreement of the simulations with actual data indicates that the
assumed noise on the altimeter is ± 2 feet rms and that the simulated vehicle response
shown in figure 20 must be accurate.

CONCLUSIONS

The hover algorithms have been used successfully on the AUSS. Simulation plays
an important role in developing this technology. Future programs should benefit from
the information gained in developing the hover algorithms.
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